If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(z^2+4z-3)=0
We multiply parentheses
4z^2+16z-12=0
a = 4; b = 16; c = -12;
Δ = b2-4ac
Δ = 162-4·4·(-12)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{7}}{2*4}=\frac{-16-8\sqrt{7}}{8} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{7}}{2*4}=\frac{-16+8\sqrt{7}}{8} $
| 85=-2x+5 | | 3u–38=34 | | 3/4=9/x+8 | | u/7=11.2 | | A=C(0.5)^2/k | | 4x(2x-9)=5(6-x) | | -80 = p-6+ -71 | | 2k^2+7k-10=0 | | f-4+2=5 | | 2/3x+5=14 | | 4+1-3n+8=5n-7-3n | | (D3+3D2-4)y=0 | | 1-2z=-13 | | 8t–18=46 | | 1/5(25-5a=4-a | | 7x^2+111=0 | | 4(v+5)=84 | | 2x^-6x-93=0 | | d/8+9=13 | | –1/4a-4=7/4a-3 | | 3(x-1)-4x=5-2(x+1)3) | | q/6+28=32 | | -4=6/7v | | -19x=84 | | 22n-21-14=-21 | | 2+2y=20 | | 35(x−7)=1 | | 6n+2=-4n+12 | | x2−3x−28=0 | | 2(y+5)=(9y+5) | | (4x+5)/13+3=41 | | 7k^2+46k+24=0 |